PDR M1060001 Discussion

1 Introduction

This paper contains edited highlights of email discussions relating to PDR M1060001 (ULCS - Padding embedded ATN ASE APDUs). The PDR was raised following a failure to interoperate between air and ground applications. It concerns whether or not there should be padding bits in PER encoded bitstrings that are embedded in other ASN.1 types. The problem manifests itself only as a bit count value that is greater than the number of significant bits in the encoded value, since the bitstrings in question are always at the end of the overall encoding, which is anyway padded with zeroes to an octet boundary. Implementations that perform a strict check on the received bitcount therefore encounter an error if the sender added padding bits that the receiver did not expect (or if the sender did not add padding bits that the receiver DID expect).

This paper is organised into the following broad discussion threads:

a) Problem Statement

b) The View of ASN.1 Experts

c) Towards a PDR resolution

Thanks to all who have contributed, and apologies if I have misrepresented or omitted your views in these edited highlights.

Version 1.0 of this paper has been updated to coincide with the progression of the PDR to RESOLVED status. It includes email discussions for the period 19th June – 23rd August (addition of items 3.14 to 3.19 and 4.6 to 4.13).

Tony Kerr

ATNP CCB Subject Matter Expert for ATN Upper Layers (SME4)

EUROCONTROL DIS/COM

Tel: +44 1252 724386

Fax: +44 1252 724384

Email: tony.kerr@cival.co.uk
23rd August 2001

2 Problem Statement

2.1 From Tony Kerr, 12 June 2001

An interoperability problem has arisen because one implementer has assumed that embedded BIT STRING encodings need to be padded to an integral number of octets while other implementers (and also the SV4 Guidance material) assumed that padding was forbidden. Bancroft Scott (ASN.1 guru) seems to support the former view. The counter argument is that the OSI application layer is not decomposed into sublayers, rather a series of ASOs, each contributing to the overall APDU encoding. Since the length of the individual BIT STRING components is well known, why introduce extra padding bits (when UNALIGNED PER is used)?

The PER standard is clear (in 10.1.1-2) that "to produce the complete encoding of the abstract syntax value ... zero bits shall be appended to it to produce a multiple of eight bits." The question at issue is - what abstract syntax value are we talking about? For ATN, in order to use the Null Encoding presentation layer, there is only ONE abstract syntax - that produced by combining the ASN.1 modules for ATN-App-ASE, ACSE and (implicitly) the ULCS full encoding "wrapper". That is, there are NOT separate abstract syntax values for (say) CPDLC, ACSE and the dialogue service. By this argument, there should be no padding of embedded BIT STRINGs.

A compromise could be to allow either padded or unpadded bitstrings. There would be no ambiguity, as the length field indicates the number of bits in the encoding.

There has not been a problem in the past because existing implementations, such as EUROCONTROL's TES and ProATN are tolerant of BIT STRING lengths in excess of the number of significant bits.

Opinions, please.

Tony Kerr (SME for SV4)

2.2 Reply from Jim Simpkins, 12 June 2001-06-15

In a message dated 6/12/01 3:14:41 PM GMT Daylight Time, jsimpkins@bcisse.com writes:

Tony,

Although I agree in spirit, I don't think the requirements in the SARPs, ACSE, and ISO 8825-2 [X.691] support your view. Both the CPDLC and CM SARPs call their messages PDUs. (I'm not familiar enough with ADS and FIS to say what they do.) ACSE calls its messages PDUs. Since ACSE wraps the application PDU, padding is necessary in the user-information field. Since the Fully-encoded-data wraps the ACSE PDU, padding is necessary there also. This is unfortunate, but it is the correct interpretation of the requirements, in my opinion.

Now, since the requirements are open to interpretation (depending on how you define PDUs in your implementation), I think we should allow for both padding-implementations and non-padding-implementations with a recommendation to implement the non-padding-implementation so that we get the bandwidth savings we want to achieve. This would require a PDR of some sort to skirt the ISO 8825-2 [X.691] padding requirement.

Jim

2.3 In a message dated 6/12/01 5:08:22 PM GMT Daylight Time, PICARD_Frederic@stna.dgac.fr writes:

I fully support Tony's view, and the rationale he developed to explain why

no intermediate padding bit should be added (one abstract syntax means one

outermost APDU, hence only one padding pattern at the end).

The WG3 ULCS sub-group has explicitely mandated in Doc 9705 the use of the

'arbitrary' field in the CF PDU ('Presentation-data-values') and

recommended in Doc 9739 the use of the 'arbitrary' field in the ACSE AARQ

EXTERNAL element on purpose in order to avoid extra padding. This is fully

in line with the PER standard, which clarifies in section 25.8 when the

'arbitrary' element of the EXTERNAL type should be used: "If the encoding

of the data value, using the agreed or negotiated encoding, **is not an

integral number of octets**, the "Encoding" choice shall be "arbitrary".

There is no assumption made in XALS that each ASE encodes independantly its

own APDU. There is neither no requirements on where the actual

encoding/decoding should take place (this is a local matter, the encoding

can be made in several steps in separate modules or in a single step, but

the encoding process should end with the same data encoding).

As the two 'arbitrary' fields are BIT STRING, I think PER section 15

"encoding the bitstring type" is fully applicable.

In other words, I don't see any requirement in the OSI and ATNP standards

which force the implementors to add intermediate padding.

Regards,

Fred.

PS1. I would be in favour of allowing both encodings (with or without

padding) only if the OSI standards do not say at all what the good encoding

is. In that case, ATNP should specify what to do to remove the ambiguity

and allowing both encoding will be no-cost for existing implementations.

However, if the OSI standards dictate one encoding but ATNP allows both,

the side effect will be to force vendors of fully compliant PER products

(supporting the good encoding) to modify their software to be able to

interoperate with non-compliant PER product. This would not be acceptable.

PS2. I disagree with Jim, the name "APDU" application level messages does

not justify by itself that padding is expected at the end of the encoding.

--

Frédéric Picard (SOFREAVIA)

STNA - BP 1084 - 31035 TOULOUSE Cedex - France

tél: 33 (0)5 62 14 55 33 - fax: 33 (0)5 62 14 54 01/02

Email: picard_frederic@stna.dgac.fr

--

2.4 In a message dated 6/12/01 7:44:35 PM GMT Daylight Time, jsimpkins@bcisse.com writes:

Fred,

Just to be clear, I want the final answer to be what you and Tony support.

I believe that that is what was intended, though I did not participate in

the development of that solution.

Can you point me to where in SV4 I can find the requirement to use the

arbitrary choice in the encoding of the EXTERNAL type for ACSE APDUs? I

found 4.3.2.6.4 and 4.3.2.6.6 for specifying the use of arbitrary in the

PDV-list. 4.3.2.6.4 says not to pad application PDUs and ACSE PDUs when

encoding the PDV-list. It does not address the encoding of the EXTERNAL

type in the ACSE APDUs (i.e., Association-information type).

4.6.6.3.3.2.1 specifies that the single-ASN1-type and arbitrary choices are

optional while the octet-aligned choice is excluded for encoding the

EXTERNAL type for ACSE User Information. This leads me to the conclusion

that I can treat the application APDUs as open types (type not know for

encoding) and then ISO 8825-2 [X.691] clause 10.2 (and A.4.4, though that's not

normative) tells me to pad the encoding of the open type. So, Bancroft's

interpretation applies. The only way to get around this is to mandate the

use of arbitrary for encoding ACSE User Information as well.

Jim

2.5 In a message dated 6/13/01 8:02:05 AM GMT Daylight Time, PICARD_Frederic@stna.dgac.fr writes:

Jim,

What you are looking for is in the CAMAL Part IV, section 2.6.5.2.1

"Encoding the ACSE user information" which ends with the following

recommendation:

"In order to produce canonical encoding, and for consistency with

Presentation User Data, implementers are adviced to use only the

"arbitrary" (BIT STRING) choice for encoding."

Fred.

2.6 In a message dated 6/13/01 2:49:33 PM GMT Daylight Time, jsimpkins@bcisse.com writes:

Fred,

What you quote is not a requirement. [SV4] Requirement 4.6.6.3.3.1.1 explicitly

allows me to choose single-ASN1-type by reference to Table 4.6-16.

"4.6.6.3.3.1.1 The User information parameter shall use the forms of

reference specified in Table 4.6-16."

Table 4.6-16 says that the single-ASN1-type parameter is optional for

sending and mandatory for receiving. As an implementer, I do not need to

follow the CAMAL (it is guidance only) and can choose single-ASN1-type

because it is easier for me (say).

As an aside, this produces a problem for Edition 3 since we're relying on

guidance to produce canonical encodings. We need requirements to do that.

I guess we're really ok since we don't sign or mac over the PDV, but rather

include the signature or mac in the PDV.

Jim

2.7 In a message dated 6/12/01 8:30:01 PM GMT Daylight Time, moulton@ons.com writes:

I've been looking around for all the relevant information so I could jump in here. Here is my take on the subject....

Section [4.3.2.6] of SV 4 specifies fully-encoded data using "arbitrary" -- BUT it's constrained by the presentation syntax. Therefore, the type and syntax of the embedded field is known -- and therefore is not an "open type" as defined in X.691 section 10.2

Rather, the contents of the Presentation Layer should be encoded as a bit-string according to [X.691] 7.7 - no padding.

Now onto ACSE ...

The asn.1 for the AARQ encodes user-information as an External. If one looks at the PER requirements for External, i.e, 25.7 then the encoding choice should be arbitrary and the data value is not an integral number of octets.

Now, of course the question is should the CM APDU be padded?? The answer to this one is -- YES -- the entire pdu must be an integral number of octets (see X.691 Sec 10.1.2) so, the last octet of the CM APDU might be padded with 0's if it happened to not fall on an octet boundary.

(How could one tell anyway -- since we only read interfaces in octets.)

So in my opinion, there is no padding anywhere except at the very end of the pdu. Basically, if you finish decoding and there is < 8 bits left (and they are all 0) then the decoding succeded. Otherwise, failure.

I do not believe that there is any way to have interoperability between the two encoding/decoding approaches since the use of padding is undetectable by the decoder.

Therefore, it is not possible to discern the encoding rules of the sender (see X.691 section 7.9).

I would support that we make it explicit that the encoding should be without padding. Having two encodings/decodings in PER is probably very dangerous.

2.8 In a message dated 6/12/01 9:00:07 PM GMT Daylight Time, jsimpkins@bcisse.com writes:

Jim,

I think we actually agree on the open type issue. The PDV data is not an open type. We are required to use arbitrary there. I meant that the CM APDU can be considered an open type. This leads to the same padding conclusion that you came to, though from a different perspective.

I'm not sure we're using the same terminology, though, on what the CM APDU is. Here's my understanding.

Case 1:

<<<CM APDU (pad1?)> in ACSE APDU (pad2?)> in PDV (pad3 when not multiple of 8 bits)>.

I think the issue lies in pad1. I think SV4 explicitly prohibits pad2 and ISO 8825-2 says to do pad3.

In the data transfer phase, we have the following.

Case 2:

<<App APDU (pad1?)> in PDV (pad3 when not multiple of 8 bits)>.

In this case, SV4 explicitly prohibits pad1 and ISO 8825-2 says to do pad3.

Case 1 comes back into play with the ACSE ABRT, RLRQ, and RLRE APDUs.

I'd like to see the PDR say that the arbitrary choice shall be used when encoding ACSE Association-information. This will prohibit pad1 in Case 1. In this way, we have eliminated the ambiguity, in my opinion.

2.9 In a message dated 6/12/01 9:17:07 PM GMT Daylight Time, moulton@ons.com writes:

Hi Jim,

Yeah, I think we agree. I think padding at <pad 1> is a bad idea -- but as I

mentioned at the end, all it may mean is that at ACSE encoding, some (or all)

of the padding will be removed and then again at <pad 3>.

I support making the SARPs explicit that there is no padding except at presentation.

2.10 In a message dated 6/12/01 9:30:43 PM GMT Daylight Time, tony.whyman@fans-is.com writes:

Dear all,

Here's a simple minded view on the subject from a dweller of the lower layers:

1. An important objective of using PER compared with BER was to minimise the number of bits transferred.

2. Padding increases the number of bits.

Regards

Tony Whyman

2.11 In a message dated 6/12/01 10:24:34 PM GMT Daylight Time, rozenblumj@tlse.sofreavia.fr writes:

All,

Based on the response received from Collins, ACI has decided to submit

an ICAO PDR to get the final resolution from ATNP expert. We feel that

this will be the quickest path the get a final answer.

The PDR has been submitted today. As technical exchange already started

between experts, we hope quick resolution of this issue so that either

Collins and/or ACI have time to change their implementation based on

the proposed solution before Miami.

Regards,

 Jerome

2.12 From Tony Kerr, 13 June:

The Proposed Defect Report referred to by Jerome is registered with the ICAO ATNP Configuration Control Board as PDR M1060001. A copy is attached.

The technical exchange is taking place on the ATNP CCB SME4 (ATN Upper Layers) discussion list. If you are not already subscribed to this list, you can register as described below.

Judging by the amount of discussion already generated, a quick resolution looks unlikely at this time. Jerome - when is "Miami" please?

Best regards
Tony Kerr (SME4, for Eurocontrol)

2.13 In a message dated 6/13/01 12:59:25 PM GMT Daylight Time, fbuck@mitre.org writes:

Miami is June 2002. And we will need a resolution far in advance of that date. I expect that early Fall 2001 is the latest a decision by ATNP could be accommodated in the Build 1 schedule. And the longer we wait the higher the risk to our implementation in Miami.

Frank Buck

Senior Principal Staff, F020

(609) 272-4025 voice

1-888-545-4603 pager

1-609-405-0418 cell phone

fbuck@mitre.org email

2.14 In a message dated 6/13/01 12:42:06 PM GMT Daylight Time, TonyKerr@aol.com writes:

There is another aspect to consider in the debate on whether or not embedded

BIT STRING types should be padded to achieve octet alignment.

The air-ground application SARPs are specified so that there is an abstract service boundary (ASI) between the Application Service Element and the ASE-User. In the case of CPDLC, messages passed across this abstract boundary "shall conform to the ASN.1 abstract syntax ATCUplinkMessage (or ATCDownlinkMessage)".

A valid implementation strategy might be to realise the ASI as a physical interface between processes or machines. Then the ATCxxMessage could be encoded/decoded in the User process and passed in encoded form across the physical ASI. The form of encoding is not specified in SARPs at this level, but it would be logical to use PER. When passing data across a physical interface, it would always be octet aligned.

This is what has given rise to the current problem:

In the airborne system in question, the CPDLC application data are encoded/decoded using routines generated by the OSS ASN.1 compiler. The OSS product always encodes an integral number of octets of user data with zero to seven trailing pad bits. The Airtel ATN product is then used to encapsulate this data and generate the ACSE APDUs and the presentation Fully-encoded-data.

The PDR resolution should not make life unduly difficult for implementers using an entirely reasonable implementation strategy such as this.

One possibility would be for the ULCS software to be required to strip off trailing padding bits from the application data bitstring presented to it, before embedding the data in ACSE apdus. This is not as straightforward as it might seem, since the ULCS will not know the number of significant bits in the bitstring unless this information is explicitly passed across the interface. This requires that the ASN.1 encoder outputs this information - if ASN.1 products do not do this, then there are real implementation problems if padding of embedded BIT STRING types is forbidden.

(Note that, as Jim Moulton pointed out, the final bit of significant encoding of an unconstrained BIT STRING will always be set to one. But this applies IF AND ONLY IF a "NamedBit List" is present, which is not the case for ACSE user-information. Therefore there can be any number of significant trailing zero bits in the encoded application data.)

The discussion continues...

2.15 In a message dated 6/13/01 1:18:46 PM GMT Daylight Time, baos@oss.com writes:

There are protocols, such as UMTS, where the PER UNALIGNED encoded data is carried in a BIT STRING container (outside of EXTERNAL), and as such the required encoding is the number of significant bits (i.e., no padding is allowed). In such cases our customers use the function ossDetermineNumberOfPadBits() to determine the number pad bits to remove from the complete encoding so as to yield exactly the right number of significant bits.

ossDetermineNumberOfPadBits() was added about a year ago in version 5.2.0 of the OSS ASN.1 Tools.

2.16 In a message dated 6/13/01 1:45:53 PM GMT Daylight Time, moulton@ons.com writes:

Now, here goes an attempt to figure out some more issues ...

It is clear that the interface between routines will be a multiple of octets. I think the

"real" issue is the value of the length field in the ASE APDU (CM or CPDLC). I would

assume that this value would be the precise number of bits in the APDU without any

padding. Therefore, the length would indicate the exact value of the number of bits in

the PER encoding. This value would be used to fill-in the value of the bit string, not the

padded value. In other words, taking the case of the multiple encoders:

CPDLC pdu -> PER encoder -> encoded pdu (with exact bit string len) passed as

an "octet-aligned" buffer of length == (bit string len / 8) + 1 if there is a remainder.

encoded pdu -> lower layer PER encoder -> where the encoded pdu is passed as a

bit string of len = value in encode pdu (not buffer length).

This actually simplifies the encoding since it means a fixed sized buffer can be passed

between routines and the encoded pdu length can be used for determining the proper length.

The implementation problem we are seeing here is that they implementation does not

consider the length of the pdu -- rather it looks at the length of the passed buffer. This

is clearly not correct. The padded length is not a valid length.

2.17 In a message dated 6/13/01 5:23:20 PM GMT Daylight Time, TonyKerr@aol.com writes:

Jim,

Clause 19.7 of X.680 talks about "When a NamedBit List is used..." In our case, there is no NamedBitList so I assume that clause 19.7 [of X.619] does NOT apply. Thus neither 15.2 nor 15.3 is applicable and we are left with clauses 15.4 and 15.10, which do not mention trailing 0 bits. It seemed strange to me too, but I checked it with Bancroft a while back.

> It is clear that the interface between routines will be a multiple

> of octets. I think the "real" issue is the value of the length field

> in the ASE APDU (CM or CPDLC). I would assume that this

> value would be the precise number of bits in the APDU without

> any padding. Therefore, the length would indicate the exact value

> of the number of bits in the PER encoding. This value would be

> used to fill-in the value of the bit string, not the padded value.

I assumed that what you get on the interface is just the contents of the bitstring, not including the length determinant. If you do get a length determinant, then I agree it should be the number of significant (unpadded) bits. Otherwise you need a function such as Bancroft's ossDetermineNumberOfPadBits().

> The implementation problem we are seeing here is that they

> implementation does not consider the length of the pdu -- rather

> it looks at the length of the passed buffer. This is clearly not

> correct. The padded length is not a valid length.

Maybe they have no alternative.

2.18 In a message dated 6/13/01 9:23:49 PM GMT Daylight Time, baos@oss.com writes:

The only difference between [X.619] 15.2 and 15.3 is that 15.2 covers the case where there are no PER-visible constraints, while 15.3 covers the case where there are PER-visible constraints. Both 15.2 and 15.3 speak to the cases where named bit lists are present.

>

> The implementation problem we are seeing here is that they

> implementation does not consider the length of the pdu -- rather it

> looks at the length of the passed buffer. This is clearly not

> correct. The padded length is not a valid length.

I don't understand why the padding is a problem in this general discussion, for PER encodings are self-delimiting, and as such it is always possible to tell exactly how many bits the value was encoded in when doing a decoding. At the PDU level there is never a danger of the decoder going too far in doing its decoding simply because the buffer is bigger than the encoded data within, for the ASN.1 type info + PER together make it clear exactly where the encoding ends.

Bancroft

3 The View of the ASN.1 Experts

3.1 On Mon, 11 Jun 2001 brconnel@collins.rockwell.com wrote:

Attached is the Rockwell Collins response to the interoperability issues

identified during system testing as identified in the ACI White Paper of 21

May 2001.

3.2 In a message dated 6/11/01 4:53 PM, baos@oss.com writes:

In the attachment you state "We maintain that zero to seven pad bits are

allowed at each layer of encoding according to the applicable OSI

standards (PER [X.619] clause 25.11)." Please note that if the contents of the

BIT STRING in question was PER-encoded then it is *required* to be

padded with zero to seven pad bits (not simply allowed), for PER requires

that the complete encoding of any PDU (the contents of the BIT STRING)

be padded so that it is an integral multiple of eight octets.

I would recommend that if there is any contention as to what the correct

encoding is that you contact the ISO/IEC ASN.1 Rapporteur,

John Larmouth <J.Larmouth@salford.ac.uk>, and/or the ITU-T ASN.1 Rapporteur,

Olivier DUBUISSON <Olivier.Dubuisson@francetelecom.com>.

Bancroft Scott Toll Free :1-888-OSS-ASN1

OSS Nokalva International:1-732-302-0750

baos@oss.com Tech Support :1-732-302-9669 x-1

1-732-302-9669 x-200 Fax :1-732-302-0023

http://www.oss.com
3.3 In a message dated 6/12/01 7:31:52 PM GMT Daylight Time, jnicolin@csc.com writes:

Bancroft,

I agree that if the BIT STRING is the outer most field of an encoding, then the encoded message should be padded to provide an even octet. I have one question on the actual encoding of the BIT STRING field in question, what should the value for the length of this BIT STRING field be? My interpretation of the ISO standards is that is should be the significant bits of the BIT STRING, not including any padding bits that are added to make an encoding an end on an even octet, is this interpretation correct?

Also one more though if anyone can help me with this one:

In reading the SARPS guidance material part 4, Communications Services dated November 7th, 1997 - Section "2.7 PER ENCODING EXAMPLES", I noticed the example for a CM Logon Request encoded this BIT STRING field with a length equal to the significant bits in the PER encoded application PDU, not including the padding bits. Has this guidance material been validated for correct encodings? I have provided this encoding example for reference:

[EXTRACT FROM SUB-VOLUME IV GUIDANCE MATERIAL]

2.7 PER ENCODING EXAMPLES

2.7.1 Purpose

This section contains examples of complete APDUs for the initial version of ATN applications.

Thus, it illustrates the complete user-information fields in the ACSE APDUs given in the previous chapter, as well as examples of P-DATA encodings and Presentation and Session Short PDUs.

2.7.2 CM Logon Request sent from Air to Ground

2.7.2.1 This example illustrates how the CM Logon Request PDU is sent as the User-information field of an ACSE A-Associate Request APDU. This is an example of an acse-apdu being sent on P-CONNECT (therefore, it is not encoded as Fully-encoded-data, which only applies in the data transfer phase).

3.4 In a message dated 6/13/01 1:57:53 AM GMT Daylight Time, baos@oss.com writes:

In the case of the BIT STRING within Association-information, the *contents* of the BIT STRING is a complete encoding and thus is padded if needed, and as such, the BIT STRING length reflects this padding.

Additionally, if the BIT STRING occurs at the very end of the message, padding may occur after the BIT STRING, but this padding is not included in the length of the BIT STRING (it is the overall message that is being padded, not the BIT STRING).

The sample encoding is incorrect (a little bit) if the encoding rules in use is strictly PER UNALIGNED with no deviation intended. Notice below that it says concerning the BIT STRING that contains CMAircraftMessage:

 10.0000 0011.1001 00 Length determinant for bit string = E4 = 228 bits (dec)

Since the bit string contains a PER UNALIGNED complete encoding of a CMAircraftMessage it (the encoding of CMAircraftMessage) is required to be an integral multiple of 8 bits in order to be in compliance with ITU-T Rec. X.691 clause 10.1.1 which states (pay attention to the last sentence):

 10.1.2 In the UNALIGNED variant of these encoding rules, all fields

 shall be concatenated without padding. If the result of encoding the

 outermost value is an empty bit string, the bit string shall be

 replaced with a single octet with all bits set to 0. If it is a

 non-empty bit string and it is not a multiple of eight bits, (zero to

 seven) zero bits shall be appended to it to produce a multiple of eight

 bits.

Since the encoding of CMAircraftMessage is required to be an integral multiple of 8 bits, the BIT STRING length of 228 bits should actually have been 232 bits due to four pad bits being added to the CMAircraftMessage encoding.

If the example had been encoded correctly, it would have ended with four pad bits as the last four bits of the BIT STRING that carries the CMAircraftMessage, followed by two pad bits added as a result of encoding the ACSE_apdu.

3.5 In a message dated 6/13/01 8:39:55 AM GMT Daylight Time, PICARD_Frederic@stna.dgac.fr writes:

Bancroft,

You are just pointing out where the interoperability problem is. With this example, the R/C implementation (with the OSS product) would encode a length of 232 bits where the ACI implementation would encode 228. You justify the padding of the CMAircraftMessage by the ITU-T Rec. 691 clause 10.1.1, but we think this section is not applicable to the ASE message.

Clause 10.1.1 forces the padding of the *outermost* value ; in the case of the ATN application layer, the outermost PDU is actually the Presentation Service Data Unit (i.e the 'Presentation-data-values' type), and not the ACSE nor the ASE PDU.

3.6 In a message dated 6/13/01 11:52:06 AM GMT Daylight Time, TonyKerr@aol.com writes:

Bancroft,

I agree with Frederic. ATN applications are unlike standard OSI applications in a number of ways, including:

- ACSE is encoded ONLY using Basic Unaligned PER, and not BER (so ATN is non-conformant according to ACSE Protocol clause 10.2.1)

- In order to use Short Connect, Null Encoding in the Presentation layer, only a single presentation context is defined for each ATN application. The single abstract syntax for each ATN AE type is effectively the set of application PDUs plus ACSE PDUs plus (in data transfer state) the Dialogue Service full encoding wrapper in a single logical module.

X.691 states (in 10.1.1-2) that "to produce the complete encoding of the abstract syntax value ... zero bits shall be appended to it to produce a multiple of eight bits." The question at issue is - what "abstract syntax value" are we talking about? Since there is only one abstract syntax module, padding bits should only occur at the outermost level?

3.7 In a message dated 6/13/01 1:06:35 PM GMT Daylight Time, baos@oss.com writes:

I understand what you are saying. I knew that padding is required because you are using an EXTERNAL to carry the PER encoding of an ASN.1 type, but gave the wrong reason as to why it is required. The gist of what I said holds (padding is needed), but I go from saying that "the sample encoding is incorrect (a little bit)" to saying that it is very much broken. Take a look at clause 25.6 of X.691 concerning which of the three CHOICE alternatives of EXTERNAL should be used:

 25.6 If the data value is the value of a single ASN.1 data type, and if

 the encoding rules for this data value are of those specified in this

 Recommendation | International Standard, then the sending

 implementation shall be "single-ASN1-type".

So PER mandates that the open type alternative (single-ASN1-type) of EXTERNAL be used, not the BIT STRING alternative, and as such, according to X.691 clause 10.9.2, padding is required. Note that not only is padding required, but that you are required to use the open type alternative, not the BIT STRING alternative.

3.8 In a message dated 6/13/01 1:50:23 PM GMT Daylight Time, Olivier.Dubuisson@francetelecom.com writes:

I entirely agree with Bancroft, i.e., the "single-ASN1-type" alternative of the EXTENAL type must be chosen, and consequently padding is required.

Frederic, I missed X.691, 25.6 when I discussed this with you on the phone this morning, but it was clearly the clause you were looking for.

So... end of problem! (I hope!)

--

Olivier DUBUISSON (ITU-T ASN.1 Rapporteur)

france telecom R&D

 _ DTL/MSV - 22307 Lannion Cedex - France

 () tel: +33 2 96 05 38 50 - fax: +33 2 96 05 39 45

 /.\/ --------------------------------------

 _/\ Site ASN.1 : http://asn1.elibel.tm.fr/
3.9 In a message dated 6/13/01 10:02:29 PM GMT Daylight Time, jnicolin@csc.com writes:

So are we saying that both the Rockwell and ACI implementations should be using the "single-ASN1-type" choice and not the "BIT STRING choice? If so, would software modifications be needed on both sides?

3.10 In a message dated 6/13/01 2:37:22 PM GMT Daylight Time, baos@oss.com writes:

Application software modification is needed. As far as the OSS ASN.1 Tools go, no modification is needed. If you do decide to be contrary to PER and carry the CMAircaftMessage in the BIT STRING (not advisable), users of the OSS ASN.1 Tools would use the function ossDetermineNumberOfPadBits() to determine exactly now many signficant bits there are in the encoding of CMAircraftMessage.

Bancroft

3.11 In a message dated 6/13/01 3:29:01 PM GMT Daylight Time, Jim.Lenz@faa.gov writes:

The conversation is fascinating, but I was told to always go to the source to find out what is "right" and what is "wrong", and in this case I am under the impression that the source is the ATN Panel of ICAO. Mr. Jim Moulton and Mr. Steve Van Trees could perhaps guide you all as to getting help in how to do this right -- since apparently several software companies have perpetuated the wrong way (or one of several wrong ways) for some time now!

I really think that agreeing or disagreeing with one persons view or another persons view is not the right way to nail this down, and I, for one, have no intention of reinventing the wheel at this point. There is an official ATN way of doing this and we should all be sticking to that if we are all to be able to claim ATN compliance.

 Jim Lenz

 U.S. ATN Panel Member (FAA)

3.12 In a message dated 6/13/01 5:30:34 PM GMT Daylight Time, TonyKerr@aol.com writes:

Bancroft,

Thanks for your continuing advice. Could I ask a point of clarification?

1) Referring to X.691 clause 25.6, is the meaning of "a single ASN.1 data type" explicitly defined anywhere? In our case, the ACSE user-information (EXTERNAL) is EITHER a value of GroundPDUs OR AircraftPDUs, depending upon context. Both of these are CHOICE types. Does that count as a single ASN.1 data type?

2) X.691 clause 25.9 states that when single-ASN1-type is used then the type replaces the open type. If we no longer have an open type, then surely padding is NOT required?

3) Notwithstanding the above, the decision was made a long time ago to prefer the BIT STRING choice for ATN applications, even if this is not completely in line with the PER standard. One reason was that the:

 ABSTRACT-SYNTAX.&Type

notation was fairly new at the time, and unfamiliar to many implementers (and ASN.1 compilers). It is too late in the day to prohibit "arbitrary" encoding as this would invalidate most if not all existing ATN implementations.

3.13 In a message dated 6/13/01 8:44:46 PM GMT Daylight Time, baos@oss.com writes:

>1)

No, it is not explicitly defined anywhere, as it seems self-descriptive. Clearly it isn't since you ask the question.

> In our case, the ACSE user-information (EXTERNAL) is EITHER a value of

> GroundPDUs OR AircraftPDUs, depending upon context. Both of these are

> CHOICE types. Does that count as a single ASN.1 data type?

Each is a different (single) ASN.1 data type. Contrast this to the case where the BIT STRING or OCTET STRING alternative of EXTERNAL is used to carry a concatenation of PDU's (e.g., multiple occurrences of GroundPDUs or AircraftPDUs concatenated one after another). Some means, such as the state of the protocol machine, or an OBJECT IDENTIFIER value, or an INTEGER value is typically used to indicate which (single) ASN.1 type is being carried within an open type.

> 2) X.691 clause 25.9 states that when single-ASN1-type is used then

> the type replaces the open type.

It does not replace the open type, but is encoded as an open type value (i.e., the value is encoded, then padded with 0-7 pad bits).

> If we no longer have an open type, then surely padding is NOT

> required?

More precisely, if "arbitrary" (BIT STRING) alternative of EXTERNAL is used then there would be no pad bit.

> 3) Notwithstanding the above, the decision was made a long time ago to prefer

> the BIT STRING choice for ATN applications, even if this is not completely in

> line with the PER standard. One reason was that the:

> ABSTRACT-SYNTAX.&Type

> notation was fairly new at the time, and unfamiliar to many implementers (and

> ASN.1 compilers). It is too late in the day to prohibit "arbitrary" encoding

> as this would invalidate most if not all existing ATN implementations.

I understand; you gotta do what you gotta to do.

BTW, if you look at X.691 clause 7.9 you will see that it is even more explicit as far as encodings carried by EXTERNAL goes. It says about them:

 When carried in an EXTERNAL type they shall be carried in the OCTET

 STRING choice alternative, unless the EXTERNAL type itself is encoded

 in PER, in which case the value may be encoded as a single ASN.1 type

 (i.e., an open type).

It pretty clearly rules out BIT STRING being used to convey PER-encoded data. Still, if it is going to be exceedingly disruptive to the aviation industry deployment schedule to re-certify a bunch of applications I would try to reach agreement that yields minimum disruption. Probably what is most important, especially if y'all digitally sign your messages, is to ensure that you clearly document what the behavior is that you have adopted, and that everyone follows it so that within your industry all messages are encoded identically given a particular abstract value.

Bancroft

3.14 In a message dated 7/10/01 10:10:36 PM GMT, j.larmouth@salford.ac.uk writes:

The following has been forwarded to me. As the ASN.1 ISO Rapporteur, I note the last line saying "Decision". I would like to first express regret that the ASN.1 spec had ambiguities over the inclusion of padding bits in PER Encodings when embedded in non-ASN.1 carriers - we are not all perfect! This problem was identified some time ago, a defect report was issued, and a TechnicaL Corrigendum which resolves the ambiguity (I hope!) is currently under ISO ballot. I would STRONGLY urge that you resolve the problem in your own protocol in a way consistent with the resolution (following close of ballot in about three weeks time) by ISO.

It would be silly and dangerous for you to resolve it differently. If you feel the proposed Technical Corrigendum is not the right answer to the problem, please make your comments (through me if you have no other route) to either ISO JTC1 SC6 or to ITU-T SG7, when they will certainly be taken account of in the ballot resolution of the defect.

If you need a copy of the Technical Corrigendum under ballot, I can supply a URL for it.

John L

3.15 Emails from tony.kerr@cival.co.uk on 11 August 2001

John,

Thank you for your intervention. I am the moderator (so-called Subject Matter Expert) of the ICAO email list dealing with this problem. It may be too late to change our specifications, but our intention is always to adopt ISO standards wherever possible. Please send the reference for the TC you refer to.

Thank you
Tony Kerr

All,

I have received the following from John Larmouth. I attach the Draft Corrigendum he refers to. It seems we were right all along - at least for BIT STRING (arbitrary) encodings. "No padding bits" will become explicit in the PER standard.

Cheers
Tony

============================

ISO/IEC JTC1/SC6 document N11946

TITLE:
X.691 Draft Corrigendum 4 – Production of complete encoding

1)
Sub-clause 10.1

Replace sub-clause 10.1 with the following:

10.1
Production of the complete encoding

10.1.1
Any type encoded for use:

a)
within a non-ASN.1 protocol; or

b)
within an ASN.1 open type; or

c)
as the type in the contents constraint on an ASN.1 OCTET STRING; or

d)
as the type in the contents constraint on an ASN.1 BIT STRING;

shall be encoded with the complete encoding specified in this sub-clause 10.1.

10.1.2
The complete encoding shall be a bit-oriented encoding if the type is encoded for use:

a)
within a non-ASN.1 protocol which provides a count in bits of its contents and where the protocol specification invoking PER encodings specifies that a bit-oriented encoding be provided; or

b)
as the type in the contents constraint in an ASN.1 BIT STRING;

It shall be an octet-oriented encoding otherwise. The production of bit-oriented and octet-oriented encodings is specified in the remainder of this sub-clause 10.1.

10.1.3
The field-list produced as a result of applying this Recommendation | International Standard to the outermost value shall be used to produce the complete encoding of the abstract syntax value as follow: each field in the field-list shall be taken in turn and concatenated to the end of the bit string which is to form the complete encoding of the abstract syntax value preceded by additional padding bits as specified in 10.1.4.

10.1.4
In the UNALIGNED variant of these encoding rules, all fields shall be concatenated without padding. In the ALIGNED variant of these encoding rules, any bit-fields in the field-list shall be concatenated without padding, and any octet-aligned-bit-fields shall be concatenated after (zero to seven) zero bits have been concatenated to make the length of the encoding produced so far a multiple of eight bits.

10.1.5
If the result of applying 10.1.3 and 10.1.4 is an empty bit-field, then the encoding shall be replaced by a single zero bit.

10.1.6
If a bit-oriented encoding is required, the result of 10.1.5 shall be the complete encoding of the abstract value. If an octet-oriented encoding is required, then (zero to seven) zero bits shall be appended to the result of 10.1.5 to produce a multiple of eight bits and the resulting octet string shall be the complete encoding of the abstract value.

3.16 Email from tony.kerr@cival.co.uk on 12 August 2001

Dear John,

Thank you for sending the draft TC. It does seem to solve our problem. I have a couple of comments on the DTC (see below), but just to be perfectly clear:

The specific problem has arisen when encoding the ACSE type of:

 user-information [30] Association-information OPTIONAL

 Association-information ::= SEQUENCE SIZE (1, ..., 0 | 2..MAX) OF EXTERNAL

So the EXTERNAL is our open type, and the SIZE resolves to 1 in the unextended case.
When using the arbitrary (BIT STRING) choice for encoding the EXTERNAL value, with UNALIGNED PER, we are looking at a bit-oriented encoding according to TC 4 clause 10.1.1.d). Right?
So that means that no padding bits are added when the EXTERNAL is concatenated with the rest of the user-information encoding. Yes? (That is what our specifications require).

However, when using the single-ASN1-type (ABSTRACT-SYNTAX.&Type) choice for encoding the EXTERNAL value, we have an octet-oriented encoding, so padding bits are added as necessary to align with an octet boundary.

Do you agree?

Please could you keep me informed of the progress of this DTC?

Many thanks
Tony Kerr (for ICAO ATNP CCB)

COMMENTS ON DTC4 to ITU-T Rec. X.691 | ISO/IEC 8825-2
==

1. Reference is made (in 10.1.1 c) and d) and 10.1.2 b)) to the "the contents constraint on/in". There is a risk that this could be interpreted as meaning that the OCTET STRING or BIT STRING in question shall have PER-visible constraints applied. It would be simpler just to say "the contents of".

2. Typo in 10.1.3: "as follow:" should be "as follows:"

3. DTC Clause 10.1.6 refers (twice) to "the result of 10.1.5". This could be wrongly interpreted as meaning "only in the case of an empty bit-field". It would be clearer to refer to "the result of applying sub-clauses 10.1.1 to 10.1.5"

3.17 In a message dated 7/12/01 10:36:27 PM GMT Daylight Time, j.larmouth@salford.ac.uk writes:

Tony,

Give me a moment. I think the ASN.1 group (and the Corrigendum) did not directly address the issue of concatenation of encodings. Protocols doing that were typically using BER, which was octet-aligned (and were self-delimiting without knowledge of the ASN.1 type). But your protocol is using PER and is concatenating encodings of values (of the same type and encoding ????) So what the right text should be for PER encodings that are concatenated - or even worse, concatenated with BER encodings

We may well be prepared to listen to your suggestions in this respect. Let me get back to you - I need to think, and I need to discuss with colleagues. But feel free to send me further comments.

John L

3.18 In a message dated 8/9/01 3:10:23 PM GMT Daylight Time, j.larmouth@salford.ac.uk writes:

You will see from the attached that there was a UK NO vote on the DTC I sent you earlier, and where you asked me to keep you informed of progress.

If you are able to defer any decision in your own group until these issues are resolved in Bangalore for the base standard, I believe it would be benficial.

John L

ISO ASN.1 Rapporteur

--

 Prof John Larmouth

 1 Blueberry Road j.larmouth@salford.ac.uk

 Bowdon Tel: +44 161 928 1605

 Cheshire WA14 3LS Fax: +44 161 928 8069

 England

=============================

ISO/IEC JTC 1/SC 06 N12005

Date:
2001-08-07

Replaces:

Document Type:
Summary of Voting/Table of Replies

Document Title:

Summary of Voting on SC 6 N 11946, DCOR ballot for ISO/IEC 8825-2/DCOR 4 ASN.1 Encoding Rules – Part 2: Packed Encoding Rules (PER) Corrigendum 4 : Production of Complete Encoding (ITU-T Rec X.691 Draft Corrigendum 4)

The UK Disapproves DTC4 to ISO/IEC 8825-2 for the following reasons:

1. The DTC fails to address the inclusion of PER encodings in the various fields of EXTERNAL and EMBEDDED PDV.

2. The DTC fails to address the inclusion of PER encodings in an unconstrained OCTET STRING or BIT STRING.

3. The DTC fails to address the inclusion of PER encodings as part of a concatenated set of encodings within a container. There are several possibilities that need consideration, including: Different encoding rules are used for the different encodings; the encodings are for different types.

4. The DTC fails to address the question of the alignment point for padding if PER encodings are concatenated with earlier encodings that do not end on an octet boundary.

5. The UK believes that when these additional possibilities are considered, it may be desirable to change the solution proposed in the DTC for the single encoding in a constrained BIT STRING case, in order to be consistent. In particular, the UK recommends that the spirit of the original text - always pad to an integral number of octets - is the simplest and best solution.

It is primarily reason 5 that leads the UK to reject the DTC.

The UK will be happy to approve the DTC if all the above uses of PER encodings are covered in a consistent manner, but believes that it may be appropriate to have a second DTC ballot.

3.19 In a message dated 8/9/01 8:41:46 PM GMT Daylight Time, j.larmouth@salford.ac.uk writes:

Tony,

> When is the Bangalore meeting?

It starts Monday 27th August, and goes on for two weeks.

> The requirements of the aeronautical community are for the minimum number

> of bits rather than padding to an integral number of octets. Perhaps a

> different solution is needed for the unaligned and aligned variants of PER?

Thanks for that input, I think it might be useful. One of the problems of not padding is where exactly alignment in the aligned variant is to be to. Of course, the difficult issue is concatenated encodings with an aligned encoding following an unaligned one. But who will ever do that?

The real problem, as I think the UK NO vote made clear, is that there are too many options in the general case (which may never arise!) and getting a clean solution for all cases with relatively simple text *may* mean sacrificing the "minimum bits" solution in the simplest cases.

But your comment is a good one, and I will make sure that it is aired in any discussion.

John L

PS You will note that the UK is alone in the NO vote, but I think the concerns it raises about the fact that the text does not currently treat all cases will be accepted as something to be addressed. Whether it will affect the resolution for the cases that *are* currently covered by the DTC, I really cannot predict.

4 Towards a PDR resolution

4.1 In a message dated 6/13/01 5:54:17 PM GMT Daylight Time, PICARD_Frederic@stna.dgac.fr writes:

Looking at the table 4-6-17 of sub-volume IV, it appears that the sender is allowed in ACSE to use the most appropriate alternative, either single-ASN.1-type or arbitrary. The receiver MUST support the decoding of the 2 formats. [The octet-aligned alternative is currently excluded].

A very simple way to solve the RC / ACI interoperability problem is for R/C to change nothing in the encoding of the ASE data (i.e. continue to pad data) but only to select the octet-string alternative which forces data to be padded. On the other hand, the ACI implementation (with no change too) will decode the octet string with no error.

In parallel, we shall add in the SARPs 2 requirements to make clear that padding is prohibited on ASE data when embedded in the the arbitrary field of the presentation-data-value or of the EXTERNAL value.

4.2 In a message dated 6/13/01 7:00:02 PM GMT Daylight Time, jsimpkins@bcisse.com writes:

Fred,

Table 4.6-17 says that octet-aligned is excluded in the ATN Support column for sending and N/A in the ATN Support column for receiving. It constrains the ACSE implementation.

I'm beginning to think we're talking about a solution that really doesn't address the problem. We seem to be discussing a PDR-solution that identifies that one or the other implemention is correct. Obviously, only one of the implementations should be correct, but we need to look at the requirements as written today to decide. We can't change the requirements in a way that makes a currently-SARPs-compliant implementation no longer SARPs-compliant. The only way we can do this is to raise a Category A PDR, like the extended transport checksum.

The problem, I think, is this: Is the RC-type of implementation compliant with the current SARPs? That boils down to: Is the PER encoding that they're using compliant with that specified in ISO 8825-2/ITU-T X.691? We also need to answer: Is the ACI implementation also compliant with the current SARPs and ISO 8825-2/ITU-T X.691?

Once we have the answer to these questions, then we can discuss the PDR solution for the SARPs. We can't argue for intent here. It's too late for that, in my opinion. We have to go by what was written.

Can anyone answer the following for me: What is the definition of a PDU and what is the relationship of a PDU to an abstract syntax? (I thought I knew the first one, but this discussion makes me wonder. I never thought about the second one 'til now.) After answering this, are CM messages considered PDUs? Are ACSE APDUs considered (real) PDUs? Or, is the PDV the only (real) PDU? The answers to these questions must be implementation-independent. In my opinion, these answers, when supported by current requirements, will tell us which implementation is valid or if both implementations are valid.

(If both implementations are valid, we're in trouble for security in Edition 3!)

Jim S.

PS: I have to admit that the FAA validation system (for credit, not blame: developed by CSC for Pre-Edition 1 validation) does the encoding just as RC does. We encode the application PDU, which gets padded because we consider it a PDU. We then take this encoded PDU and encode it in ACSE since our ACSE is a "stand-alone" implementation that is not aware of the ULCS CF.

Then, the ULCS CF takes the ACSE output (PDU) and encodes that in a PDV. The ACSE encoding was considered a PDU, so it too has pad bits. At each subsequent encoding phase, we don't add pad bits to what we received since each output was a multiple of 8 bits. We treated each encoding as the encoding of a PDU, which requires pad bits at the end when not a multiple of 8 bits. I think this is what RC is doing also.

On the decode side, the OSS compiler is able to handle the unused pad bits. For example, we say we have 256 bits when really there are only 254 useful bits and we still get a successful decode.

Now, I never really paid attention to the padding issue here. I didn't know it was happening, but I can't argue that it is wrong. I can say, now, that this isn't what was intended, but I think this implementation is still valid.

4.3 In a message dated 6/15/01 10:00:35 AM GMT Daylight Time, PICARD_Frederic@stna.dgac.fr writes:

The two choices are allowed: single-ASN.1-type and bitstring. Why don't we allow in the SARPs the two encoding schemes (padded or not padded) and force padded implementations to use in ACSE the single-ASN.1-type and the unpadded implementations to use the bit-string choice ?

And we need to add a requirement to make explicit that padding is not allowed when using the arbitrary option of the CF presentation-data-value element (I thing we now all agree that BIT STRING means NO padding).

4.4 In a message dated 6/15/01 1:12:43 PM GMT Daylight Time, TonyKerr@aol.com writes:

Fred, Jim,

I think we're getting there! I just wanted everyone to have a chance to contribute to the technical discussion before progressing the PDR.

We have the following "givens":

- the intention was always for the minimum number of bits (even if we fell down on the specification slightly)

- we would prefer a canonical encoding

 * therefore better not to allow a choice between arbitrary and single-asn1-type (but we may have to live with both and include a SARPs Recommendation to use bitstring)

 * and we can't allow *optional* padding bits (because we could have different encoded length values, hence non-canonical)

- we are not strictly conformant to ACSE or PER standards. We have to live with that.

- ATN applications are "special" because all protocol elements are collapsed into a single abstract syntax.

For the PDR proposed solution, I would therefore suggest:

a) A requirement in 4.6.6.3.3.2 that when the arbitrary form is used there shall be no padding bits.

b) A Recommendation and supporting Note in 4.6.17 that the arbitrary form should be used.

c) A requirement after 4.3.2.6.4 that there shall be no padding bits in the BIT STRING

d) A requirement after 4.6.4.2.3 that encoded ACSE APDUs shall not be padded when embedded in Fully-encoded-data

e) A requirement in 4.8.6.2 that no padding bits shall be added

f) A requirement in 4.9.3.7 that no padding bits shall be added

Does that cover everything?

Do we also need statements in the application SARPs (e.g. in 2.2.1.6.1) that no padding bits are added by the ASEs?

What do you think?

4.5 In a message dated 6/15/01 2:01:13 PM GMT Daylight Time, PICARD_Frederic@stna.dgac.fr writes:

My comments below. I just continue to not understand why we can't allow both encodings... which is the alternative I still prefer.

> we would prefer a canonical encoding

FP> this is true but I thing this is not relevant for the padding issue (this is relevant for the encoding of the actual data). The signature and mac are made on the user data once embedded in the ASN.1 structure 'MacData' or 'SignedData' in an *OCTET STRING* component, therefore the user data as far as the security is concerned is always padded. Even if a relay system decodes and re-encodes data with a different final padding, the signature/mac will stay the same since it is computed on the padded data. During the data transfer phase, encoded data are sent in the field unprotectedData of the ATNProtectSign type which is also an OCTET STRING, the padding is issue is not relevant as well. Jim, is it correct ?

>* therefore better not to allow a choice between arbitrary and single-asn1-type

>(but we may have to live with both and include a SARPs Recommendation to use bitstring)

FP> this is where I'm not fully happy... Are we really sure we cannot allow the choice ?

>* and we can't allow *optional* padding bits (because we could have different

>encoded length values, hence non-canonical)

FP> I agree.

> we are not strictly conformant to ACSE or PER standards. We have to live with that.

FP> I agree.

> ATN applications are "special" because all protocol elements are collapsed

>into a single abstract syntax.

FP> I agree.

FP> I would add another given

> when BIT STRING are used, no padding should be added.

>For the PDR proposed solution, I would therefore suggest:

>a) A requirement in 4.6.6.3.3.2 that when the arbitrary form is used there shall

>be no padding bits.

FP> I agree.

>b) A Recommendation and supporting Note in 4.6.17 that the arbitrary form

>should be used.

FP> I agree.

>c) A requirement after 4.3.2.6.4 that there shall be no padding bits in the BIT STRING

FP> I agree.

>d) A requirement after 4.6.4.2.3 that encoded ACSE APDUs shall not

>be padded when embedded in Fully-encoded-data

FP> It seems to be redundant with the previous one. I would not put that one because this is not a requirement on ACSE, but on the module which uses the ACSE APDU.

>e) A requirement in 4.8.6.2 that no padding bits shall be added

FP> No, for the same reason.

>f) A requirement in 4.9.3.7 that no padding bits shall be added

>Does that cover everything?

FP> We should have a look on SV 8...

>Do we also need statements in the application SARPs (e.g. in 2.2.1.6.1) that

>no padding bits are added by the ASEs?

FP> for the same reason as in d) above, I would not add a requirement here. It is not a requirement on the ASE...

4.6 In a message dated 6/19/01 9:49:41 PM GMT, jsimpkins@bcisse.com writes:

Fred and Tony,

For some reason, I did not receive your last two emails. I copied the following from Tony's paper on the CENA server. I've prefixed my replies (JS>) below.

[Replies from tony.kerr@cival.co.uk on 20 Jun 2001 are also included, prefixed TK>]

> we would prefer a canonical encoding

FP> this is true but I thing this is not relevant for the padding issue (this is relevant for the encoding of the actual data). The signature and mac are made on the user data once embedded in the ASN.1 structure 'MacData' or 'SignedData' in an *OCTET STRING* component, therefore the user data as far as the security is concerned is always padded. Even if a relay system decodes and re-encodes data with a different final padding, the signature/mac will stay the same since it is computed on the padded data.

During the data transfer phase, encoded data are sent in the field unprotectedData of the ATNProtectSign type which is also an OCTET STRING, the padding is issue is not relevant as well. Jim, is it correct ?

JS> There are two issues here

-- the choice between single-ASN1-type and arbitrary and

-- the insertion of pad bits when arbitrary is used.

JS> The choice between single-ASN1-type and arbitrary should be acceptable. I say this because the verifier of a received MAC or signature should not strip the signature/MAC, decode the data, reencode the data, and then verify the signature/MAC. Just verify the signature/MAC over the encoding you received. Then decode the data after the signature/MAC verifies.

TK> I agree it should be OK for now. But it might be a wise precaution for

the future (encryption? hash compression?) to have canonical encodings now.

Might there also be a cert issue if we cannot state for sure what the encoded

bitstring will look like?

JS> The padding is not so clear-cut. We need to separate out padding after encoding the application APDU (is it a PDU?) and padding after encoding the ACSE APDU (is it a PDU?).

TK> Let's not get hung up on definitions. Yes, they are PDUs but they get

merged together to form a super-PDU i.e. a single abstract syntax, hence a

single presentation context.

JS> Using made up values for discussion, let's say that my encoded application PDU is 11 bits. Now, I pad it out to 16 bits.

Then, I send it off to ACSE, who sees only 16-bits of user data. ACSE doesn't know how many pad bits were inserted since it doesn't know the application ASE ASN.1.

TK> ACSE doesn't need to know the application's syntax. It could be passed a

bitstring with a bitcount of the significant bits.

JS> Now, the ACSE APDU overhead is 26 bits. I take those 26 bits and concatenate the 16-bits of user data for a total APDU length of 42 bits. I now pad this out to 48 bits and pass it down to the ULCS CF for encoding in the fully-encoded-data. No problem there.

TK> Fine for RLRQ, RLRE etc. AARQ/AARE don't get the full encoding wrapper.

JS> Now, if I didn't pad out to 16 bits for the application encoding, my ACSE APDU would have been 26+11=37 bits plus 3 pad bits to 40 bits. We're one byte off here. So, the padding issue does apply for security, even though we are using OCTET STRINGs. Even though the padding is always performed at the end, it depends on where in the octet-alignment the padding occurs when going through each step of encoding.

JS> Does this make sense?

TK> I think so. So you're agreeing that we need canonical encodings.

>* therefore better not to allow a choice between arbitrary and single-asn1-type

>(but we may have to live with both and include a SARPs Recommendation to use bitstring)

FP> this is where I'm not fully happy... Are we really sure we cannot allow the choice ?

JS> I think we can for the first reason given above -- don't re-encode to verify a signature/MAC. Verify over what encoding you received.

>* and we can't allow *optional* padding bits (because we could have different

>encoded length values, hence non-canonical)

FP> I agree.

JS> I agree.

> we are not strictly conformant to ACSE or PER standards. We have to live with that.

FP> I agree.

JS> Ouch. I don't see anywhere in SARPs where we explicitly say we're not conformant to the PER standard. For example:

"4.3.2.6.1 All User Data which is passed across the presentation service boundary shall be encoded using the unaligned variant of the Packed Encoding Rules (PER) for ASN.1 (ISO/IEC 8825-2)."

"4.6.4.2.2 The system shall support that encoding which results from applying the ASN.1 packed encoding rules (basic, unaligned variant), as specified in ISO/IEC 8825-2, to the abstract syntax module specified in 4.6.4.2.1.

4.6.4.2.3 Packed encoding (basic, unaligned) shall be used for encoding all ACSE Protocol Control Information (PCI) for interchange."

"2.1.6.1.1 The CM application shall use PER encoding as defined in ISO/IEC 8825-2, using the Basic Unaligned variant to encode/decode the ASN.1 message structure and content specified in 2.1.4."

TK> The word from the ASN.1 gurus was that conformant implementations should only use OCTET STRING or Single-ASN1-type, so we're fairly non-conformist there. But we do fully conform where it's important - encoding of ASN.1 types. We can choose explicitly to diverge from (one interpretation of) the standard in suppressing the padding bits (it was already implicit to some, but not all implementers. It was always explicit in the SV4 Guidance Material). Why use up expensive bandwidth just to comply with one purist interpretation of the standards?

JS> I think this is where the intent vs what's written problem creeps in.

TK> Absolutely! Although the intent was always made clear in the GM.

> ATN applications are "special" because all protocol elements are collapsed

>into a single abstract syntax.

FP> I agree.

JS> This isn't clear in the SARPs since there are multiple abstract service interfaces (e.g., application use of dialog service, DS CF use of ACSE, ACSE use of DS CF presentation primitive mappings). This gets muddied further with the introduction of the securedATNULs-Abstract-Syntax ABSTRACT-SYNTAX.

TK> Maybe it isn't spelt out, but it is a requirement of using Null-encoding

presentation. See SARPs Table 4.5-2.

JS> Take the following excerpts from CM and CPDLC as well.

"2.1.4.2 CM ASN.1 Abstract Syntax

2.1.4.2.1 The abstract syntax of the CM protocol data units shall comply with the description contained in the ASN.1 module CMMessageSetVersion1 (conforming to ISO/IEC 8824-1), as defined in 2.1.4."

"2.3.4.2 CPDLC ASN.1 Abstract Syntax

2.3.4.2.1 The abstract syntax of the CPDLC protocol data units shall comply with the description contained in the ASN.1 module CPDLCMessageSetVersion1 conforming to ISO/IEC 8824, as defined in this section."

JS> These requirements implies an abstract syntax for CM and an abstract syntax for CPDLC. Apparently, the use of the term "abstract syntax" is not consistent between SV2 and SV4, and that causes problems for those who are not well-schooled in ISO/ITU-T standards terminology.

TK> Can you suggest a clarification? For me, the ATN-App ASEs can have their own abstract syntax modules, as can ACSE or SESE, and these modules are merged into a "super-abstract-syntax" to give us the single P-context. It is the job of the CF to merge and split contexts, since we have elected not to use presentation services.

FP> I would add another given

> when BIT STRING are used, no padding should be added.

>For the PDR proposed solution, I would therefore suggest:

>a) A requirement in 4.6.6.3.3.2 that when the arbitrary form is used there shall

>be no padding bits.

FP> I agree.

JS> We need to resolve the question of what a PDU is. Bancroft says that padding is required at the end of encoded PDUs. If the application APDUs are PDUs, then we're not ok here. If they are not PDUs, then we're ok here. Same applies to ACSE APDUs given the octet-alignment issue noted above.

TK> I disagree, I think. Bancroft also said "you gotta do what you gotta do". You can always have protocols embedded within protocols (ASOs within ASOs). Anyway, all we would have to do if necessary is state "we do not conform to X.691 in the following areas..." or "clause xyz of X.691 is interpreted in the ATN context as follows..."

>b) A Recommendation and supporting Note in 4.6.17 that the arbitrary form

>should be used.

FP> I agree.

JS> May not matter depending on resolution of PDU issue -- unless I'm the only one confused about that one.

>c) A requirement after 4.3.2.6.4 that there shall be no padding bits in the BIT STRING

FP> I agree.

JS> Same as a.

>d) A requirement after 4.6.4.2.3 that encoded ACSE APDUs shall not

>be padded when embedded in Fully-encoded-data

FP> It seems to be redundant with the previous one. I would not put that one

because this is not a requirement on ACSE, but on the module which uses the

ACSE APDU.

JS> This means that the DS CF will not add padding bits. Will ACSE?

>e) A requirement in 4.8.6.2 that no padding bits shall be added

FP> No, for the same reason.

JS> Same as a.

>f) A requirement in 4.9.3.7 that no padding bits shall be added

>Does that cover everything?

FP> We should have a look on SV 8...

JS> I believe SV8 uses only OCTET STRINGs since the MAC/signature algorithms all operate on OCTET STRINGs. So, the padding issue doesn't apply to SV8. What does apply is the padding issues in SV2 and SV4 to ensure that what is given to SV8 is canonically encoded.

>Do we also need statements in the application SARPs (e.g. in 2.2.1.6.1) that

>no padding bits are added by the ASEs?

FP> for the same reason as in d) above, I would not add a requirement here.

It is not a requirement on the ASE...

JS> Same as a.

TK> Are you violently opposed to the proposed solution in the Accepted PDR?

It sounds like you think there should be more guidance, or maybe clarification of the AE structure in SARPs 4.3.1. Can you propose additional text?

4.7 In a message dated 6/20/01 10:17:49 PM GMT, jsimpkins@bcisse.com writes:

[Replies from tony.kerr@cival.co.uk on 20 Jun 2001 are also included, prefixed TK>]

Tony,

I'm not in violent opposition of the PDR solution. I'm just trying to make sure that we don't invalidate a previously valid implementation based on "I said this but meant that" unless the implementer agrees to the change.

TK> I understand. We also don't want to invalidate implementations that followed both the intent and the SV4 GM and did not include intermediate pad bits in their encoding.

Concerning the remaining issues...

1. I agree we should mandate a canonical encoding. This should actually be easy since no one is using the single-ASN1-type anywhere that we know of. I guess I was responding to Fred's wish to support both. If that's a strong wish, it shouldn't pose too much of a problem for security. I prefer one encoding, though.

TK> That's more drastic than I was proposing. The suggestion was to Recommend arbitrary (bitstring) encoding, but still allow Single-asn1-type, since it's always been there and someone might have implemented it.

2. I think the loose definitions of terms is part of our problem, but I agree that it's too late to really do anything about it now. I was keying off on the requirement for encoding a PDU. If something is a PDU, it gets padded after encoding. That's not what we want, but it's what the standard says and we didn't say to do something other than what the standard says. It is this use that leads me to believe that RC has the compliant implementation, though not the intended implementation.

TK> Just for my information - where do you see the requirement for padding PDUs? X.691 talks about "abstract syntax values" and "outermost values", and doesn't mention PDUs at all.

3. I don't want to take a purist stance for purist-stance-sake. I want to do what the requirements to-date say and eliminate the interpretation issue without changing requirements to match the intent. I think we're too late for that.

TK> It seems though that the requirements are open to interpretation. The Guidance Material makes the intention clear, but GM is only GM, and you would have to study the encodings at the minutest level of detail to realise that embedded bitstrings are not padded. The PDR resolution must clarify and remove the ambiguity.

4. My references to SV2 were intended to poke holes in the proposed solution, not the current SARPs. I don't think we benefit by venturing off to SV2 with this problem.

TK> Understood, but I don't think the holes are really there. I did propose a "health warning" wherever SV2 mentions PER encoding of its pdus, but Fred (as SME2) didn't like it.

5. At this time, I'd have to say that I don't have a clear picture of the AE structure, so I can't propose text.

TK> I will attempt to produce a Note along the lines "the 'outermost value' referred to in Clause 10.1.1 of X.691 is interpreted in ATN context as follows...". Then explain how all the component abstract syntax modules are considered merged into one.

4.8 In a message dated 6/21/01 1:52:11 PM GMT, PICARD_Frederic@stna.dgac.fr writes:

Jim,

I agree with your example, there is a one byte difference depending of whether you apply or not a padding to the ASE data.

You conclude the following:

"We're one byte off here. So, the padding issue does apply for security, even

though we are using OCTET STRINGs. Even though the padding is always

performed at the end, it depends on where in the octet-alignment the padding

occurs when going through each step of encoding.

However, the length difference is for the ACSE data, not for the ASE data.

Since signature/mac is applied on the ASE data (always embedded in an OCTET STRING), not on the ACSE data, the fact that the resulting AARQ PDU is 40 or 48 bits for the same actual ASE data does not impact security. The Security ASO is not aware of this difference and does not care...

It is why I thought the padding issue does not apply for security. But it is only a feeling, I'm not 100% sure about that !

4.9 In a message dated 6/21/01 3:50:13 PM GMT, jsimpkins@bcisse.com writes:

Fred,

You are right. I forgot the Security ASO was on top of ACSE.

4.10 In a message dated 6/21/01 2:10:18 PM GMT, jsimpkins@bcisse.com writes:

Tony,

I agree with the proposed solution. I'm really fighting someone else's battle. I'd hate for someone to change requirements on me after I've completed my development and get into test -- especially when the aircraft certification process is involved.

Just as clarification, I'm guilty of what I was criticizing -- loose terminology. I wasn't poking holes in the solution -- I was criticizing the SARPs use of the term "abstract syntax".

So, as I understand it, the "outermost value" is the PDV. All embedded PDUs are treated as embedded bit strings, which get no padding when following the rules for encoding bit strings. Sounds good.

4.11 In a message dated 8/8/01 10:17:47 AM GMT, PICARD_Frederic@stna.dgac.fr writes:

Tony,

Please find below some additional comments to the proposed resolution.

You stated in your mail that "The proposed solution, i.e. not to allow intermediate padding bits in ATN encodings, ...". Actually, it is not fully true. The proposed solution is to not allow intermediate padding bits in ATN encodings WHEN BIT STRING TYPES ARE USED. When other alternatives (allowed by the SARPs) are used - e.g. single-ASN.1 type in ACSE user-information EXTERNAL, or GraphicString/EXTERNAL.single-ASN.1 type in ACSE authentication value -, padding MUST apply. The proposed changes to the PDR in the comments below try to introduce this condition.

>Dear CCB members,

>

>In accordance with the procedures of the ATNP CCB, the decision period for

>

>PDR M1060001 (ULCS - Padding embedded ATN ASE APDUs) will end on 09 August

>20001. If no votes to the contrary are received by that time, then consensus

>shall be considered to be reached and the PDR will become RESOLVED. The

>proposed solution, i.e. not to allow intermediate padding bits in ATN

>encodings, will apply to all editions of Doc 9705 Sub-Volume IV.

>

>Best regards

>Tony Kerr

>SME4 for EUROCONTROL

>Tel: +44 1252 724386

>Fax: +44 1252 724384

>Email: tony.kerr@cival.co.uk

===

Title: ULCS - Padding embedded ATN ASE APDUs

PDR Reference: M1060001

Originator Reference:

SARPs Document Reference: SV4

Status: PROPOSED

Impact: B

PDR Revision Date: 02/08/01 (minor editorial changes)

 12/07/01 (ACCEPTED -> PROPOSED)

 19/06/01 (SUBMITTED -> ACCEPTED)

PDR Submission Date: 12/06/01

Submitting State/Organisation: ACI

Submitting Author Name: Rozenblum, J.

Submitting Author E-mail Address: rozenblum@tlse.sofreavia.fr

Submitting Author Supplemental Contact Information:

SARPs Date: DOC 9705 edition 2 and edition 3

SARPs Language: English

Summary of Defect:

ATN end system interoperability problems are experienced because the ATN SARPs do not indicate whether padding bits must be added at the end of the ASE APDUs (e.g. ATN-App, ACSE, SESE) when the resulting encoding is not a multiple of 8 bits.

Assigned SME: SME 4

FP> The PDR should be also assigned to SME 2 and SME 3 (see comments below).

SME Analysis:

There has been considerable email debate on this PDR - the technical arguments are captured in [this document].

It is clear that the SARPs are open to interpretation in the area of encoding embedded ASN.1 BIT STRINGs, as the PDR was raised following a failure to interoperate between air and ground applications. The problem concerns whether or not there should be padding bits in PER encoded bitstrings that are embedded in other ASN.1 types. The problem manifests itself only as a bitcount value that is greater than the number of significant bits in the encoded value, since the bitstrings in question are always at the end of the overall encoding, which is anyway padded with zeroes to an octet boundary.

Implementations that perform a strict check on the received bitcount therefore encounter an error if the sender added padding bits that the receiver did not expect (or if the sender did not add padding bits that the receiver DID expect).

There are a number of 'givens':

- the intention has always been for the minimum number of bits to be sent over the air-ground data link. This intention is embodied in the encoding examples in guidance material (Doc 9739/1, Part IV section 2.7), which show that intermediate padding bits are NOT present in the encodings.

- a canonical (i.e. reproducible) encoding is preferred to avoid possible problems (e.g. with security services, new compression algorithms, certification requirements for predictable behaviour, etc.) in the future

* therefore it is better not to allow a choice between arbitrary and single-ASN1-type (though it may be necessary to live with both, and include a SARPs Recommendation to use bitstring),

* and *optional* padding bits cannot be allowed (because there could be different encoded length values, hence non-canonical)

- it has to be accepted that ATN SARPs not completely conformant to external OSI standards, including ACSE and PER standards.

- ATN applications are 'special' because all protocol elements are collapsed into a single abstract syntax.

Possibly statements could be added where PER is invoked in the application SARPs (e.g. in 2.2.1.6.1) that no padding bits are added by the ASEs.

Note that there is currently a Draft Technical Corrigendum to the PER Standard (TC4 to ITU-T Rec. X.691 | ISO/IEC 8825-2) which aims to resolve the ambiguity in the standard. The proposed PDR resolution is independent of this proposed change to the Standard.

Comment 1> Why is the PDR independent ? Section 10.1.2 b) of the proposed

change to the standard is fully applicable to the PDR since this is the

requirement which forces the bit-oriented encoding form when an ASN.1 value

is embedded within a BIT STRING.

Proposed SARPs amendment:

1/ In 4.6.6.3.3.2, INSERT new subsection and Note after Table 4.6-17:

4.6.6.3.3.2.2 When the 'arbitrary' (BIT STRING) form of encoding is used,

a bit-oriented encoding shall be applied, such that no additional padding bits

are appended to the encoded BIT STRING value.

Note.- The above provision means that data encoded by ATN-App ASEs, when

embedded as user-information in ACSE APDUs, are treated by the CF as normal

BIT STRING values, not in general an integral number of octets. Padding bits

are only ever appended to the outermost Fully-encoded-data value that is

passed across the Presentation Service boundary.

Comment 2> The way padding is to be done when the 'single-ASN1-type' (OPEN

TYPE) form of encoding is used should also be specified to remove any

ambiguity, e.g.

4.6.6.3.3.2.2. When the 'single-ASN1-type' (ABSTRACT-SYNTAX.&Type) form of

encoding is used, the octet-oriented encoding of an open type shall be

applied, such that additional padding bits are appended to make the length

of the encoding produced so far a multiple of eight bits.

Comment 3> Similar requirement should be specified for the encoding of the

Authentication-value ACSE parameter which will contain encoded SESE PDU.

1bis/ In 4.6.6.3.2, INSERT new subsection and Note after Table 4.6-15:

4.6.6.3.2.3 Recommendation.- The BIT STRING form of encoding ACSE

authentication-value should be used.
Note.- The above Recommendation, if followed, provides optimal bit-efficiency.

4.6.6.3.2.3 When the BIT STRING or EXTERNAL.arbitrary forms of encoding is used,

a bit-oriented encoding shall be applied, such that no additional padding bits

are appended to the encoded BIT STRING value.

Note.- The above provision means that data encoded by SESE ASEs, when

embedded as authentication-value in ACSE APDUs, are treated by the ACSE as normal

BIT STRING values, not in general an integral number of octets.

4.6.6.3.2.4. When other forms of encoding are used, the octet-oriented

encoding of an open type shall be applied, such that additional padding

bits are appended to make the length of the encoding produced so far a

multiple of eight bits.

**

2/ In 4.6.6.3.3.2, INSERT a further new subsection and Note as follows:

4.6.6.3.2.3 Recommendation.- The arbitrary form of encoding ACSE

user-information should be used.
**

Comment4 > section number should be 4.6.6.3.3.2.2.

**

Note.- The above Recommendation, if followed, produces a canonical encoding

for a given user PDU, is consistent with the Fully-encoded-data wrapper used

by the CF at the Presentation Service boundary, and provides optimal bit-efficiency.

**

Comment 5> The point on canonical encoding should be removed since the

other form of encoding (single-ASN.1-type) produces ALSO a canonical

encoding.

Note.- The above Recommendation, if followed, is consistent with the Fully-encoded-data wrapper used by the CF at the Presentation Service boundary, and provides optimal bit-efficiency.

**

3/INSERT a new subsection and Note after 4.3.2.6.4:

4.3.2.6.4 bis A bit-oriented encoding shall be applied, such that no

padding bits are appended to the encoded BIT STRING value.

Note.- The above provision means that data encoded by ATN-App ASEs, when

embedded in presentation-data-values, are treated by the CF as normal BIT

STRING values, not in general an integral number of octets. Padding bits are

only ever appended to the outermost Fully-encoded-data value that is passed

across the Presentation Service boundary.

**

Comment 6> Presentation-data-values contains ATN-App ASEs during the

transfer phase, but also contain ACSE APDU (AARQ) in dialogue establishment

phase. The proposed note should be extended to cover both cases, as follows:

Note.- The above provision means that data encoded by ATN ASEs, when

embedded in presentation-data-values, are treated by the CF as normal BIT

STRING values, not in general an integral number of octets. Padding bits are

only ever appended to the outermost Fully-encoded-data value that is passed

across the Presentation Service boundary.

4/INSERT a new Note after 4.6.4.2.3:

Note.- When embedded in Fully-encoded-data at the Presentation Service

boundary, encoded ACSE APDUs are treated as bit-oriented values that are not

padded to an integral number of octets; the length determinant includes only

the significant bits of the encoding, corresponding to the ASN.1 type.

5/INSERT a new Note after 4.8.6.2.1.2:

Note.- Encoded SESE APDUs are treated as bit-oriented values that are not

padded to an integral number of octets; the length determinant includes only

the significant bits of the encoding, corresponding to the ASN.1 type.

Comment 7> This is true only when a BIT STRING form of encoding is used,

otherwise the octet-oriented form is applicable (e.g. when GraphicString or

EXTERNAL.single-ASN-1.type is used). The note should read:

Note.- When encoded SESE APDUs are treated as bit-oriented values that are not

padded to an integral number of octets; the length determinant includes only

the significant bits of the encoding, corresponding to the ASN.1 type.

6/INSERT a new Note after 4.9.3.7.1:

Note.- Encoded GACS APDUs are treated as bit-oriented values that are not

padded to an integral number of octets; the length determinant includes only

the significant bits of the encoding, corresponding to the ASN.1 type.

Comment 7> This is true only when a 'arbitrary' form of encoding is used,

otherwise the octet-oriented form is applicable (e.g. when

single-ASN-1.type is used). The note should read:

Note.- When encoded GACS APDUs are treated as bit-oriented values that are not

padded to an integral number of octets; the length determinant includes only

the significant bits of the encoding, corresponding to the ASN.1 type.

**

Comment 8> Similar requirements should be added for other ASEs:

6/INSERT a new Note after 2.1.6.1.1:

Note.- When encoded CM APDUs are treated as bit-oriented values that are not padded to an integral number of octets; the length determinant includes only the significant bits of the encoding, corresponding to the ASN.1 type.

6/INSERT a new Note after 2.2.1.6.1.1:

Note.- When encoded ADS APDUs are treated as bit-oriented values that are not padded to an integral number of octets; the length determinant includes only the significant bits of the encoding, corresponding to the ASN.1 type.

6/INSERT a new Note after 2.2.2.6.1.1:

Note.- When encoded ARF APDUs are treated as bit-oriented values that are not padded to an integral number of octets; the length determinant includes only the significant bits of the encoding, corresponding to the ASN.1 type.

6/INSERT a new Note after 2.3.6.1.1:

Note.- When encoded CPDLC APDUs are treated as bit-oriented values that are not padded to an integral number of octets; the length determinant includes only the significant bits of the encoding, corresponding to the ASN.1 type.

6/INSERT a new Note after 2.4.6.1.1:

Note.- When encoded FIS APDUs are treated as bit-oriented values that are not padded to an integral number of octets; the length determinant includes only the significant bits of the encoding, corresponding to the ASN.1 type.

7/ INSERT a new subsection 4.3.2.6.8:

4.3.2.6.8 Between peer ATN-App AEs, a single default presentation

context shall be used; this is known by bilateral agreement.

Note 1.- All component abstract syntax modules (e.g. ATN-App-ASE, ACSE,

SESE) are considered merged into one. It is the job of the CF to merge and

split contexts, since ATN does not use presentation layer context handling

services.

Note 2.- ASN.1 packed encoding rules, basic unaligned variant, are used to

provide the transfer syntax for the single abstract syntax.

Note 3.- Clause 7.9 of the PER Standard is not applicable to ATN, since:

a) EXTERNAL values are fully resolved since all abstract syntaxes are known a priori,

b) when carried in the (null) presentation protocol, 'full encoding' with the

BIT STRING choice alternative is used.

Note 4.- The 'outermost value' referred to in Clause 10.1.1 of the PER

Standard is interpreted in ATN context as the encoded data that passes over

the Presentation Service boundary. Padding bits are only ever appended to

achieve octet alignment at this boundary.

Impact on Interoperability:

Decoding errors (and connection release) systematically occur when two communicating systems do not implement the same padding scheme and the receiving system checks the way the sender has encoded the message. In some cases, the length of the decoded data does not match the length of the encoded data.

PDR Validation Status: Validated by actual implementations.

SME Recommendation to CCB: Progress to RESOLVED

CCB Decision:

4.12 In a message dated 8/9/01 4:07:55 PM GMT Daylight Time, TonyKerr@aol.com writes:

Dear colleagues,

Following substantive comments on the proposed PDR M1060001 resolution, a

revised proposal is attached. Responses to the comments are included in the

SME analysis section.

The voting period will be extended by 2 weeks to allow the revised PDR to be

analysed by all interested parties. If no negative votes are received by

August 23, the PDR will automatically progress to Resolved status.

Best regards

Tony Kerr

(SME4 for EUROCONTROL)

===

Title: ULCS - Padding embedded ATN ASE APDUs

PDR Reference: M1060001

Originator Reference:

SARPs Document Reference: SV4, SV2

Status: PROPOSED

Impact: A (for security encoding changes)

PDR Revision Date: 09/08/01 (revised after comments)

 02/08/01 (minor editorial changes)

 12/07/01 (ACCEPTED -> PROPOSED)

 19/06/01 (SUBMITTED -> ACCEPTED)

PDR Submission Date: 12/06/01

Submitting State/Organisation: ACI

Submitting Author Name: Rozenblum, J.

Submitting Author E-mail Address: rozenblum@tlse.sofreavia.fr

Submitting Author Supplemental Contact Information:

SARPs Date: DOC 9705 edition 2 and edition 3

SARPs Language: English

Summary of Defect:

ATN end system interoperability problems are experienced because the ATN

SARPs do not indicate whether padding bits must be added at the end of the

ASE APDUs (e.g. ATN-App, ACSE, SESE) when the resulting encoding is not a

multiple of 8 bits.

Assigned SME: SME 4, SME2 and SME3

SME Analysis:

There has been considerable email debate on this PDR - the technical arguments are captured in [this document].

It is clear that the SARPs are open to interpretation in the area of encoding embedded ASN.1 BIT STRINGs, as the PDR was raised following a failure to interoperate between air and ground applications. The problem concerns whether or not there should be padding bits in PER encoded bitstrings that are embedded in other ASN.1 types. The problem manifests itself only as a bitcount value that is greater than the number of significant bits in the encoded value, since the bitstrings in question are always at the end of the overall encoding, which is anyway padded with zeroes to an octet boundary.

Implementations that perform a strict check on the received bitcount therefore encounter an error if the sender added padding bits that the receiver did not expect (or if the sender did not add padding bits that the receiver DID expect).

There are a number of 'givens':

- the intention has always been for the minimum number of bits to be sent over the air-ground data link. This intention is embodied in the encoding examples in guidance material (Doc 9739/1, Part IV section 2.7), which show that intermediate padding bits are NOT present in the encodings.

- a canonical (i.e. reproducible) encoding is preferred to avoid possible problems (e.g. with security services, new compression algorithms, certification requirements for predictable behaviour, etc.) in the future

* therefore it is better not to allow a choice between arbitrary and single-ASN1-type (though it may be necessary to live with both, and include a SARPs Recommendation to use bitstring),

* and *optional* padding bits cannot be allowed (because there could be different encoded length values, hence non-canonical)

- it has to be accepted that ATN SARPs not completely conformant to external OSI standards, including ACSE and PER standards.

- ATN applications are 'special' because all protocol elements are collapsed into a single abstract syntax.

Possibly statements could be added where PER is invoked in the application SARPs (e.g. in 2.2.1.6.1) that no padding bits are added by the ASEs.

Note that there is currently a Draft Technical Corrigendum to the PER Standard (TC4 to ITU-T Rec. X.691 | ISO/IEC 8825-2) which aims to resolve the ambiguity in the standard. The proposed PDR resolution is independent of this proposed change to the Standard.

FP Comment 1> Why is the PDR independent? Section 10.1.2 b) of the proposed change to the standard is fully applicable to the PDR since this is the requirement which forces the bit-oriented encoding form when an ASN.1 value is embedded within a BIT STRING.

SME4> PER Corrigendum 4 is still a draft under ballot: we cannot wait for the final resolution. We know what the required result is for ATN and will adopt it regardless of the ISO process. The DCor is still somewhat ambiguous: the BIT STRING in the EXTERNAL is not padded, but what about the EXTERNAL itself? Neither a) nor b) in DCor 10.1.2 would seem to apply.

The ASN.1 ISO Rapporteur is currently thinking about it.

FP Comment 2> The way padding is to be done when the 'single-ASN1-type' (OPEN TYPE) form of encoding is used should also be specified to remove any ambiguity, e.g.

SME4> The intention was to discourage the use of single-ASN1-type in favour of BIT STRING. It would still be possible to mandate for ATN that a bit-oriented encoding is used, for maximum efficiency. However, given that single-ASN1-type is deprecated, it seems admissible to allow octet-aligned encoding in this case.

FP Comment 3> Similar requirement should be specified for the encoding of the Authentication-value ACSE parameter which will contain encoded SESE PDU.

SME4> This has been done in PDR M1060002. The proposed change will be moved to this PDR so that similar changes are grouped together.

FP Comment 4 > section number should be 4.6.6.3.3.2.2.

SME4> It should actually be 4.6.6.3.3.2.3.

FP Comment 5> The point on canonical encoding should be removed since the other form of encoding (single-ASN.1-type) produces ALSO a canonical encoding.

SME4> Disagree. While there is a CHOICE of arbitrary or single-ASN1-type, the encoding is NOT canonical, since we cannot predict which choice will be taken by implementations. This point could be important for certification, as the encoding is not deterministic and the number of test cases is multiplied. Therefore it would be better to mandate ONLY the bitstring choice. We cannot do that because of backward compatibility. The PDR text will be clarified.

FP Comment 6> Presentation-data-values contains ATN-App ASEs during the transfer phase, but also contain ACSE APDU (AARQ) in dialogue establishment phase. The proposed note should be extended to cover both cases, as follows:

SME4> Presentation-data-values NEVER contain AARQ or AARE APDUs: these are mapped to P-CONNECT. However, the comment does apply to other ACSE APDUs, and the proposed PDR amendment is agreed.

FP Comment 7> This is true only when a BIT STRING form of encoding is used, otherwise the octet-oriented form is applicable (e.g. when GraphicString or EXTERNAL.single-ASN-1.type is used

SME4> See PDR M1060002 (the relevant parts will be moved to this PDR). The proposal is that ONLY the BIT STRING form will be allowed for SESE.

FP Comment 7(bis)> This is true only when a 'arbitrary' form of encoding is used, otherwise the octet-oriented form is applicable (e.g. when single-ASN-1.type is used).

SME4> Disagree. For GACS, being new in edition 3, there is no backward compatibility issue, so BIT STRING can be mandated.

FP Comment 8> Similar requirements should be added for other ASEs:

SME4> Agreed, if that is acceptable to SME2.

Proposed SARPs amendment:

SUB-VOLUME IV CHANGES

=====================

1/INSERT a new subsection and Note after 4.3.2.6.4:

4.3.2.6.4 bis A bit-oriented encoding shall be applied, such that no padding bits are appended to the encoded BIT STRING value, and the length determinant of the BIT STRING encoding equates to the number of significant bits.

Note.- The above provision means that data encoded by ATN ASEs, when embedded in presentation-data-values, are treated by the CF as normal BIT STRING values, not in general an integral number of octets. Padding to an octet boundary only applies to the outermost Fully-encoded-data value that is passed across the Presentation Service boundary.

2/ INSERT a new subsection 4.3.2.6.8 and Notes:

4.3.2.6.8 Between peer ATN-App AEs, a single default presentation context shall be used; this is known by bilateral agreement.

Note 1.- All component abstract syntax modules (e.g. ATN-App-ASE, ACSE, SESE) are considered merged into one. It is the job of the CF to merge and split contexts, since ATN does not use presentation layer context handling services.

Note 2.- ASN.1 packed encoding rules, basic unaligned variant, are used to provide the transfer syntax for the single abstract syntax.

Note 3.- Clause 7.9 of the PER Standard is not applicable to ATN, since:

a) EXTERNAL values are fully resolved since all abstract syntaxes are known a priori,

b) when carried in the (null) presentation protocol, 'full encoding' with the BIT STRING choice alternative is used.

Note 4.- The 'outermost value' referred to in Clause 10.1.1 of the PER Standard is interpreted in ATN context as the encoded data that passes over the Presentation Service boundary. Padding bits are appended to achieve octet alignment at this boundary.

3/INSERT a new Note after 4.6.4.2.3:

Note.- When embedded in Fully-encoded-data at the Presentation Service boundary, encoded ACSE APDUs are treated as bit-oriented values that are not padded to an integral number of octets; the length determinant includes only the significant bits of the encoding, corresponding to the ASN.1 type.

4/ In 4.6.6.3.2.1, Table 4.6-15:

Row A.A.11.2/1 (GraphicString), column ATN Support (1),

 REPLACE: See text WITH: X

Row A.A.11.2/1 (GraphicString), column ATN Support (2),

 REPLACE: M WITH: N/A

Row A.A.11.2/2 (BIT STRING), column ATN Support (1),

 REPLACE: See text WITH: M

Row A.A.11.3/3 (EXTERNAL), column ATN Support (1),

 REPLACE: See text WITH: X

Row A.A.11.3/3 (EXTERNAL), column ATN Support (2),

 REPLACE: M WITH: N/A

5/ In 4.6.6.3.2.2, REPLACE:

If the authentication functional unit is supported, at least one of the Authentication-value forms listed in Table 4.6-15 shall be implemented for sending.

WITH:

If the authentication functional unit is supported, the BIT STRING form of encoding the ACSE Authentication-value field shall be used, with a bit-oriented encoding such that no additional padding bits are appended to the encoded value.

Note.- The above provision means that data values encoded by SESE, when embedded in ACSE APDUs, are treated by the CF as normal BIT STRING values, not in general an integral number of octets. Padding to an octet boundary only applies to the outermost Fully-encoded-data value that is passed across the Presentation Service boundary.

6/ In 4.6.6.3.3.2, INSERT new subsections and Notes after Table 4.6-17, as follows:

4.6.6.3.3.2.2 Recommendation.- The arbitrary form of encoding ACSE user-information should be used.
Note.- The above Recommendation, if followed, produces a canonical encoding for a given user PDU, is consistent with the Fully-encoded -data wrapper used by the CF at the Presentation Service boundary, and provides optimal bit-efficiency.

4.6.6.3.3.2.3 When the 'arbitrary' (BIT STRING) form of encoding is used, a bit-oriented encoding shall be applied, such that no additional padding bits are appended to the encoded BIT STRING value in the EXTERNAL user information type, nor to the encoded EXTERNAL value itself.

Note.- The above provision means that data encoded by ATN-App ASEs, when embedded as user-information in ACSE APDUs, are treated by the CF as normal BIT STRING values, not in general an integral number of octets. Padding to an octet boundary only applies to the outermost Fully-encoded-data value that is passed across the Presentation Service boundary.

4.6.6.3.3.2.4. If the 'single-ASN1-type' (ABSTRACT-SYNTAX.&Type) form of encoding is used, the octet-oriented encoding of an open type shall be applied, such that additional padding bits are appended to make the length of the encoding produced so far a multiple of eight bits.

Note.- Encoding as single-ASN1-type is permitted for backward compatibility, but its use is deprecated.

7/(edition 3 only) INSERT new subsections after 4.8.6.2.1.2:

4.8.6.2.1.3 SESE APDUs shall be encoded as instances of the type SESEapdus specified in ISO/IEC 11586-3 | ITU-T Rec. X.832, including the encoding of the top level CHOICE.

4.8.6.2.1.4 Encoded SESE APDUs shall be treated as bit-oriented values that are not padded to an integral number of octets; the length determinant includes only the significant bits of the encoding, corresponding to the ASN.1 type.

4.8.6.2.1.5 Padding bits shall be appended if necessary to achieve octet alignment of encoded values in the following cases only:

a) the 'unprotected' field in the ATNProtectSign type, which will be a bit-oriented ATN-App APDU value, padded to an integral number of octets.

b) the open ASN.1 type seItem in the SESEapdus.SETransfer APDU, since the PER standard requires, in clause 10.2, that this is encoded as an octet-aligned-bit-field, preceded by an encoded length in units of octets.

8/(edition 3 only) INSERT a new Note after 4.9.3.7.1:

Note.- Encoded GACS APDUs are treated as bit-oriented values that are not padded to an integral number of octets; the length determinant includes only the significant bits of the encoding, corresponding to the ASN.1 type. The only exception to this, though not recommended, is if a GACS APDU is carried as user-information in an ACSE APDU, in which case it may be treated as an octet-aligned single-ASN1-type.

SUB-VOLUME II CHANGES

=====================*

9/INSERT a new Note after 2.1.6.1.1:

Note.- When encoded CM APDUs are treated as bit-oriented values that are not padded to an integral number of octets, the length determinant includes only the significant bits of the encoding, corresponding to the ASN.1 type.

10/INSERT a new Note after 2.2.1.6.1.1:

Note.- When encoded ADS APDUs are treated as bit-oriented values that are not padded to an integral number of octets, the length determinant includes only the significant bits of the encoding, corresponding to the ASN.1 type.

11/INSERT a new Note after 2.2.2.6.1.1:

Note.- When encoded ARF APDUs are treated as bit-oriented values that are not padded to an integral number of octets, the length determinant includes only the significant bits of the encoding, corresponding to the ASN.1 type.

12/INSERT a new Note after 2.3.6.1.1:

Note.- When encoded CPDLC APDUs are treated as bit-oriented values that are not padded to an integral number of octets, the length determinant includes only the significant bits of the encoding, corresponding to the ASN.1 type.

13/INSERT a new Note after 2.4.6.1.1:

Note.- When encoded FIS APDUs are treated as bit-oriented values that are not padded to an integral number of octets, the length determinant includes only the significant bits of the encoding, corresponding to the ASN.1 type.

Impact on Interoperability:

Decoding errors (and connection release) systematically occur when two communicating systems do not implement the same padding scheme and the receiving system checks the way the sender has encoded the message. In some cases, the length of the decoded data does not match the length of the encoded data.

Some of the changes proposed for Security ASE encodings are non-interoperable (i.e. prohibiting previously legal encodings). This is justified on the grounds that the security provisions have not yet been formally published by ICAO, and also that there are no known implementations to date.

PDR Validation Status: Validated by actual implementations.

SME Recommendation to CCB: Progress to RESOLVED

CCB Decision:

===

4.13 In a message dated 8/10/01 10:37:58 AM GMT Daylight Time, PICARD_Frederic@stna.dgac.fr writes:

Thanks Tony for reviewing and correcting my comments, I fully agree now with the PDR. For comment 6, I wrote exactly the opposite of what I meant... I propose you move from the PDR my comments and your answer to the discussion file to clean the PDR.

Cordialement,

Fred.

CITRS/T03/D36V1.0
23 August 2001
Page 39 of 39

