PDR M2020002 Discussion

Title:

ULCS CF State Table - predicates p4, p5 in NULL state

PDR Submission Date:

14/02/2002

Summary of Defect:

The CF is assumed to be in the NULL state whenever there is no state information available, and there is dialogue/association. In paragraph 4.3.3.3.2.1.1, it states that "a new instance of communication shall be created, with its CF initially in the NULL state." Predicates p4 and p5 assume state information to be available which contradicts this. Since this instance of communication (and the associated user actions) can only specify "security" or "no security" on the D-START req, only p6 should be used during dialogue establishment.

Further, the use of p0 & p5 in STA0 (D-START req) which calls for the event of SA-SEND req requires knowledge of the security ASE that is not readily available, (nor discernable) is it is assumed that the CF started in the

NULL state.

Proposed SARPs amendment:

There are two possible courses of action:

1. Change the state table by adding a new state (NULL01) that maintains communication state information upon completion of the release phase. In this case, the use of p4 and p5 would be possible with maintenance of appropriate state information. The transition to the NULL state would occur due to an event from the security ASE.

2. Remove predicates p4 and p5 from dialogue establishment and use only p6. This would remove the requirement for state information in the NULL state.

28 Feb 2002: SME Commentary:

The problem seems to based on a misreading of the Security Requirements parameter of the D-START service. 4.2.3.2.1 Note 6 states: "Valid abstract values [for Security Requirements] are specified in 8.3-1." Table 8.3-1 states that the DS-User can set the Security Type to:

1 - No Security

2- Secured Dialogue supporting Key Management

3 - Secured Dialogue

The assumption in the PDR that the DS-User can only specify "security" or "no security" is therefore erroneous. It is proposed that the PDR should be REJECTED.

PDR Validation Status: Introducing a new state would require extensive validation by modelling and/or implementation.

Email from Jim Moulton, 28 Feb 2002

I think you misunderstood my contention (probably due to a lack of detail on my part.)

Basically, the problem is that giving the user three choices like the current spec is immaterial -- if the statement that when in the NULL state and a D-START initiates a new instance of communication. If this is true -- the CF, and all associated ASOs must be assumed to be without ANY state or context information from a previous instance of communication. If the user somehow has knowledge that the system on which it is running has maintained state/context information, e.g., in the SASO, then the CF cannot be a new instance of communication.

So, the problem is either we admit that we want to have access to information in the SASO across associations -- and change the CF to include the ability to initiate a new dialogue/association based on past events, or we admit that there is no way to access information across CF instantiations.

If one thinks about an implementation, based on the "new instance of instantiation", it would easily make sense to clone a child process each time a D-START is issued. The cloned CF and ASOs would start without any context information. It would not be possible to share info across SASO instances without a lot of overhead and concurrency issues.

If I am not mistaken, the whole purpose of this is to have ability to re-try failed association establishments by the user issueing a different D-START. The assumption should be that this is NOT a new instance of communication, and therefore we need to modify the CF.

Email from Jim Simpkins, 04 Mar 2002

I'd like to clarify one statement.

The maintenance of security context (i.e., do I have a session key with this peer and what are my message counters if I do?) across dialogue instantiations is so that CM can establish the session key during a CM-logon where the dialogue is not maintained. Later, the CM can then use that session key for other services such as CM-update or CM-contact without the need to renegotiate a session key. There was no attempt made to allow the "ability to re-try failed association establishments by the user issuing a different D-START". This statement actually goes against what security is trying to provide.

Email from Gérard Mittaux-Biron, 28 Feb 2002

 I am not sure to fully understand the concern expressed by this PDR. What I can say is:

a) p4 predicate means that the D-START request that was issued by the Dialogue user had its security requirement parameter set to "Secured dialogue supporting key management". This is fully described in section 4.3.3.3.2.2.2.

b) p5 predicate means that the D-START request that was issued by the Dialogue user had its security requirement parameter set to "Secured dialogue". This is fully described in section 4.3.3.3.2.2.3.

c) There is no management of the security status of the overall system done by the upper layers: the S-ASO does not check whether or not a "Secured dialogue supporting key management" was established prior to any attempt to establish a "secure dialogue". This mainly comes from a concern of SGB3 where it was considered that this kind of knowledge, close to security, should be kept away from upper layers mechanisms.

 Therefore, I don't see where one can find state information associated to p4 or p5. Furthermore, there is no state information maintained by the S-ASO after the Dialogue release, at least in the frame of SV4. System level security information is maintained but this is not part of the S-ASO.

 This is why I would reject PDR M2020002.

Email from Jim Simpkins, 04 Mar 2002

At first, I was confused by your statement in item c, but now I remember that you are correct. The SSO maintains indirect knowledge of the use of a "Secured dialogue supporting key management" prior to any attempt to establish a "secure dialogue". It does this by checking for the availability of the shared public parameter X (creating during the establishment of a "Secured dialogue supporting key management") and by checking for the availability of an existing session key between the two peers. The Shared Key Derivation Parameter (X) will exist when a "Secured dialogue supporting key management" was established between two upper layer peers for any application (but only CM for ATS). Further, the session key will exist between two upper layer peers supporting CM for the same reason.

When we talk about dialogue establishment between two non-CM peers, then only the existence of X will occur on the first dialogue establishment.

My recollection of why this was done this way was to minimize the complications surrounding the generation of a session key in all the possible combinations. One of the goals of a security specification is simplicity. If it is too complicated, there are additional areas to exploit.

Right now, all of the above complexity is isolated to SSO-SessionKey. This means that the SSO maintains the security context across dialogues.

So, from a CF point of view, I believe that the requirement of 4.3.3.3.2.1.1 is correct. The CF and SASO do not maintain any context info. The SSO does. These are then new instances of communication since the CF nor SASO know about any previous invocation between the Source and Destination peers.

